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2 Abstract 

3 Since greenhouse gas mitigation e˙orts are being mostly implemented in cities, the 

4 ability to quantify emission trends for urban environments is of paramount importance. 

5 However, previous aircraft work has indicated large daily variability in the results. Here 

6 we use measurements of CO2, CH4 and CO from aircraft over fve days within an in-

7 verse model to estimate emissions from the D.C./Baltimore region. Results show good 
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8 agreement with previous estimates in the area for all three gases. However, aliasing 

9 caused by irregular spatiotemporal sampling of emissions is shown to signifcantly im-

10 pact both the emissions estimates and their variability. Extensive sensitivity tests allow 

11 us to quantify the contributions of di˙erent sources of variability and indicate that daily 

12 variability in posterior emissions estimates is larger than the uncertainty attributed to 

13 the method itself (i.e. 17% for CO2, 24% for CH4 and 13% for CO). Analysis of hourly 

14 reported emissions from power plants and traÿc counts shows that 97% of the daily 

15 variability in posterior emissions estimates is explained by accounting for the sampling 

16 in time and space of sources that have large hourly variability and, thus, caution must 

17 be taken in properly interpreting variability that is caused by irregular spatiotemporal 

18 sampling conditions. 

19 Introduction 

20 As cities move toward mitigating their carbon footprints, estimating their emissions using 

21 atmospheric observations is a valuable way to assess the eÿcacy of mitigation policies. Recent 

22 work1–7 has already demonstrated the capability of top-down (atmospheric measurement-

23 based) estimation methods to inform bottom-up inventory methods for some greenhouse 

24 gases (GHGs). On regional and urban scales, top-down methods have been shown to be 

25 e˙ective at estimating emissions using either tower-based or aircraft-based concentration 

26 measurements.8–12 

27 Atmospheric trace gas concentration measurements from airborne platforms have been 

28 used extensively to estimate emissions from a region. Both oil and gas basins and urban 

29 regions have been studied using mass balance methods,13–17 including the Washington D.C./ 

30 Baltimore metropolitan area.11,12 Researchers have also used aircraft observations with trans-

31 port models in an inversion framework to estimate emissions at regional,18–21 urban22,23 and 

32 local scales.24 

33 Several studies have investigated the source of daily variability in aircraft-based top-down 
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34 emissions estimates for a given region. Variability in estimated emission rates has previously 

35 been attributed to uncertainty in the mass balance methodology, which would confound or 

36 obscure real emissions changes.25,26 More recent work using airborne measurements over oil 

37 and gas felds has shown that temporal variability in emissions must be considered when 

38 interpreting estimates from single-day fights, however. Lavoie et al.27 found signifcant 

39 temporal variability in single source emissions of methane (CH4) from the Eagle Ford oil and 

40 gas production basin in Texas, while Schwietzke et al.28 investigated the e˙ect of episodic 

41 CH4 emissions from natural gas facilities on the regional mass balance estimates in the 

42 Fayetteville Shale. 

43 In this study, we use observations collected during fve aircraft fights over a two-week 

44 period in February 2016 within a Bayesian inversion framework to: 1) estimate emissions 

45 of CO2, CH4 and CO from the cities of Washington D.C. and Baltimore, MD, (Fig. 1), 2) 

46 quantify the uncertainty, and its sources, in each day’s emissions estimate and, 3) explain 

47 the cause for the observed daily variability in the estimated emissions. 

48 To this end, we use an ensemble of inversions where prior emissions, transport model 

49 and observation dataset were varied. Ensemble spread and correlations between six trans-

50 port models were used to construct the full model-data mismatch covariance matrix, and 

51 the background mole fraction was frst estimated by using sensitivities to nearby outside 

52 sources and then further optimized within the inversion. Additionally, sensitivity tests were 

53 conducted investigating the impacts of background choice, omitting correlations in the trans-

54 port error covariance matrix and changing the magnitude of the prior emission errors. We 

55 use the inversion ensemble and sensitivity tests to quantify the di˙erent sources of variabil-

56 ity and, thus, understand the uncertainty inherent in the inverse methodology. We then 

57 investigate daily variability in estimated emissions and to what extent this variability can 

58 be explained by aliasing caused by irregular sampling of spatial and temporal variability in 

59 large sources within the study domain. 
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Figure 1: Computational domain (0.03° resolution) showing the inversion domain (black 
rectangle) and the outer domain (entire map) used to account for nearby outside sources. 
Flight tracks, Census-designated urban areas (gray shaded regions), the Marcellus, Devo-
nian (Ohio) and Utica shale plays in the Appalachian basin and locations of the geometric 
center (centroid) of the oil and gas felds are also shown.29 Total emissions are reported 
here within the accounting box (red polygon) defned by the corners: (39.80°N, 76.60°W), 
(39.00°N,78.00°W), (38.25°N, 77.25°W) and (39.20°N, 76.00°W). 

60 Methods 

61 Observations 

62 Trace gas observations from two airborne platforms were used in this study: Purdue Univer-

63 sity’s Beechcraft Duchess, housing the Airborne Laboratory for Atmospheric Research, or 

64 ALAR, (Purdue) and the University of Maryland’s Cessna 402B research aircraft (UMD). 
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65 The two aircraft few simultaneously for 5 days, mostly during afternoon hours, collecting 

66 trace gas mole fraction and meteorological data along transects at di˙erent altitudes that 

67 covered the full depth of the PBL (Fig. 1 and SI for further details). To determine the e˙ect 

68 of withholding observations from the inversion system, we alternatively used CO2 and CH4 

69 observations from both aircraft, the UMD aircraft alone, or the Purdue aircraft alone, as 

70 part of the ensemble of inversions. Purdue did not measure CO, thus the CO inversions used 

71 only UMD observations. 

72 Bayesian Inversion Framework 

73 We estimate trace gas emissions using a Bayesian inverse analysis30,31 as in Lopez-Coto et 

74 al.32 Optimum posterior estimates of fuxes are obtained by minimizing the cost function J : 

h i 
T TJ (x) =

1 
(x − xb) Pb 

−1 (x − xb) + (Hx − y) R−1 (Hx − y) (1)
2 

75 where xb is the frst guess or a priori state vector, Pb the a priori error covariance 

76 matrix which represents the uncertainties in our a priori knowledge about the fuxes and R 

77 the error covariance matrix, which represents the uncertainties in the observation operator 

78 H and the observations y, also known as model-data mismatch. The observation operator 

79 H is constructed using the sensitivity of observations to surface fuxes, or footprints (units: 

80 ppm µmol-1 m2 s) generated with a transport model. Here we modify the formulation to 

81 include optimization of the background in the inversion (see SI for details). 

82 Transport Models 

83 In order to generate an ensemble of transport models and therefore better represent the 

84 uncertainties, NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory dispersion 

85 model (HYSPLIT)33 was driven with 5 di˙erent meteorological products: the High Resolu-

86 tion Rapid Refresh (HRRR) NOAA operational forecast product34 and 4 confgurations of 
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87 the Weather Research and Forecasting model (WRF35) provided by the National Center for 

88 Atmospheric Research (NCAR) that included 4 di˙erent PBL parametrizations, 2 sources of 

89 initial and boundary conditions and the inclusion of the Building Energy Parameterization 

90 (BEP) urban canopy model in one of the confgurations. In addition, the vertical mixing 

91 option in HYSPLIT also varied (Table S1 and SI for details). 

93 Nine CO2 emissions inventories were used in the inversion to investigate the resultant vari-

94 ability in the posterior emissions (Table S2). Four of them (Vulcan (VU36), ODIAC (OD37), 

95 FFDAS (FF38) and ACES (AC39) are existing anthropogenic CO2 inventories but for a 

96 di˙erent year; one provided only on-road emissions (DARTE (DA40)); one is the mean of 

97 the previous fve (EB); and the rest (fat (FL) and simple (SP32)) are constructed here to 

98 complement the ensemble of prior fuxes. In addition, we use the ACES mean for February 

99 between 12 - 19 EST (AC2). Since DARTE only provided on-road emissions, a simple calcu-

100 lation of urban emissions was used to complement it. CH4 prior emissions were represented 

101 using EPA’s gridded inventory (EP) for 2012,41 EDGAR v4.3.242 for 2012 (EG), the mean 

102 of the previous two (EB), and a fat prior (FL). For CO we use EDGAR v4.3.2 (EG),43 

103 the National Emissions Inventory (NEI) for 2011 from EPA (NI,44), the annual mean ACES 

104 inventory (AC as in the CO

92 Emissions Inventories 

2 case) scaled using the mean observed ΔCO:ΔCO2 ratio (6.18 

105 ppb/ppm) and, again, a fat prior (FL). 

106 Background Determination 

107 Properly accounting for the background is critical for the inversion as the fux correction is 

108 based on the observed enhancements above the background value. The impact of upwind 

109 sources can be important especially in areas such as the one under study here, where multiple 

110 sources exist in the surroundings (Fig. 1). Thus, we estimated the contribution from outside 

111 the domain using a Lagrangian approach by convolving footprints from a reduced set of our 
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112 ensemble of transport models and prior fuxes. We extended the domain to the full extent 

113 shown in Fig. 1. The full background was then represented as the ensemble mean of the 

114 contribution from outside of the domain of interest (yoc, time-varying along the track) plus 

115 the long-range background (ylr, constant for a given fight). This methodology provided a 

116 time varying a priori background that included uncertainties that was then further optimized 

117 in the inversion (SI). 

118 Error Covariances 

119 i) Prior Flux Error Covariance 

120 The prior fux error covariance represents the uncertainties in the prior estimation of the 

121 fuxes. Although bottom-up CO2 emissions estimates are made on global and national scales 

122 with small uncertainties, considerable errors are introduced when the emissions are disaggre-

123 gated to grid cells, due to the usage of proxies to spatially distribute emissions.45 Reported 

124 errors at grid cell levels range from 4% to more than 190%, averaging about 120%.46 For CH4 

125 and CO it is likely that the errors at grid cell levels are even larger than for CO2 because 

126 of the less well-known characteristics of these species’ sources. Given these reported uncer-

127 tainties at grid cell levels, we use a value of 100% of the grid cell emissions as uncertainty in 

128 this work for all the prior inventories and gases with the exception of FFDAS where we use 

129 a scaled up version of the provided uncertainties and the EB case for CO2 where we use the 

130 standard deviation of the ensemble at each pixel to represent the uncertainties. In all cases, 

131 a covariance exponential model in space was assumed. (See SI for details) 

132 ii) Outside Contribution (background) Prior Error Covariance 

133 We consider a double exponential model, in space and time, to represent the error covari-

134 ance of the outside contribution (yoc) along the track. The diagonal is populated with the 

135 uncertainty of the initial guess outside contribution based on the variance from the di˙erent 

136 transport models and prior fuxes (SI). 
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137 iii) Model Error 

138 The model-data mismatch error covariance was assumed to have three independent con-

139 tributions: 1) uncertainty in the observations, 2) uncertainty in the long-range background 

140 concentration and 3) uncertainty in the transport model representation. The uncertainties in 

141 the observations have their origin in the measurement uncertainties and the representativity 

142 of the assigned mean to the averaging period (one minute in our case). This contribution is 

143 not correlated and thus the covariance was considered diagonal. The long-range background 

144 (ylr) determination also introduces uncertainty into the system. This contribution was also 

145 assumed to be uncorrelated. Lastly, the transport model uncertainty is complex with several 

146 previously published methods for its determination. Here we tested two methods, both based 

147 on the ensemble of transport models. First, we tested a diagonal covariance populated with 

148 the inter-model variance simulated using the same surface fuxes (the prior emissions in each 

149 inversion case) in all the transport models similar to Engelen et al.47 and Desroziers et al.48 

150 As stated in Engelen et al.,47 this estimate can be too large for some models and too small 

151 for other models, thus, in order to better represent the fdelity of each model and for each ob-

152 servation, we weighted the inter-model standard deviation with the relative error computed 

153 by using the wind measurements from the aircraft. This defnition of the transport model 

154 error covariance assumes there are no correlations in space and time which is unlikely to be 

155 true. Therefore, for the second method, which was used in the main ensemble of inversions, 

156 we computed the correlations between the di˙erent transport models and included them in 

157 the covariance matrix, leaving the frst method as a sensitivity test (see SI for details). 

158 Sensitivity Analysis 

159 As described in the previous sections, the main inversion ensemble was composed by di˙erent 

160 prior emissions (9 for CO2, 4 for CH4 and 4 for CO), 6 transport models and 3 combinations of 

161 the observations for 5 fight days, totaling 1,290 inversions (810 + 360 + 120). This inversion 

162 ensemble was confgured with the background and prior and transport error covariances 
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163 choices that are most reasonable for the analysis. However, in order to additionally test 

164 the sensitivity of the posterior estimates to inversion setup choices that might not be as 

165 appropriate, we also investigated the e˙ects of changing the background determination, the 

166 transport error covariance, and the prior fux error covariance, separately from the main 

167 inversion ensemble. Specifcally, for the background test, we performed the inversion 1) 

168 without optimizing the Lagrangian background, 2) scaling the Lagrangian background, and 

, 5th 169 3) selecting a single constant value along the track as background defned by the 1st 

170 or 10th percentile, to compare with our base case of optimizing the background (OBC1). 

171 For the scaled background case, a single scaling factor for each fight was applied to the 

172 background time series. This scaling factor was the ratio of posterior to prior emissions for 

173 the inversion case where the background was not optimized or scaled. We also tested the 

174 impact of using only a diagonal transport error covariance as well as reducing and increasing 

175 the uncertainty in the prior fuxes (50%, 100% and 200%). This sensitivity test resulted in 

176 a total of 12 cases with 15,480 individual inversions, (Table S3). 

177 Both the main inversion ensemble and the sensitivity test were analyzed in the same 

178 fashion, grouping by cases (prior, transport, day, observation dataset or sensitivity case) 

179 and then computing the mean and quantiles as shown in Figs. 2, S7, S10, S13 and S16. 

180 The variability associated with each grouping was then computed as the standard deviation 

181 among each case’s mean value. 

182 Normalized Observed Emissions 

183 We construct an analysis to investigate whether the hourly variability of the energy gen-

184 eration and traÿc sectors’ emissions, combined with the specifc fight pattern on a given 

185 day, can explain the daily variability in the posterior CO2 estimates. Both of these sources 

186 have publicly available data at the hourly level: Continuous Emissions Monitoring System 

187 (CEMS49) data for power plants and Travel Monitoring Analysis System (TMAS50) data 

188 for traÿc counts. First, we sum all the power plant emissions and traÿc counts within the 
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189 footprint (we use the ensemble mean footprint as a mask) of each observation used in the 

190 inversion and within the defned accounting box. We match the hourly power plant emissions 

191 and traÿc counts with the observation time, accounting for transport time to the point of 

192 the observation at hourly temporal resolution. Then we average this value (the sum of all 

193 traÿc counts or powerplant emissions within each footprint) over all observations in each 

194 fight for each of the fve fights. Using an average allows us to account for the di˙erence 

195 in the number of observations per fight. Because traÿc counts and power plant emission 

196 rates are in di˙erent units, we defne the normalized observed emissions (nOE), allowing for 

197 the combination of the two sectors. We normalize counts and power plant emissions each to 

198 their respective campaign mean so that the campaign mean is equal to one. Furthermore, 

199 we use the relative contribution of the di˙erent sectors in the ACES 2011 annual mean39 

200 within the defned accounting box to construct the normalized observed emissions (nOE) for 

201 each fight as follows: 

CEMSi T MASi
nOEi = fe + fr + 1 − (fe + fr) (2)

hCEMSi hT MASi 

202 In the above defnition, i is the index indicating the fight, fe is the contribution of the 

203 electricity production sector (16%) and fr is the contribution of the traÿc emissions (46%) 

204 in ACES. The last term of Eq. 2 represents the remainder of anthropogenic CO2 emission 

205 sectors. By this construction, the mean nOE for the campaign is also equal to 1. 

206 Results 

207 In the following subsections we present the main results of the analysis and discuss the 

208 variability and uncertainty of the emissions estimates. In this context, the terms variability 

209 and uncertainty are not used as synonyms. Rather, we use the term variability to describe 

210 how a property (posterior total emissions for the most part) changes (varies) with respect 

211 to di˙erent variables like time, space or model choices. The term uncertainty refers to the 
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212 ability of the inverse method to represent the measurand, and it combines all sources of 

213 variability for a single day’s estimate. 

214 Emissions Rates 

215 Our mean estimates for the defned accounting box are 87 ± 28 kmol s-1 for CO2, 0.42 ± 0.12 

216 kmol s-1 for CH -1 
4 and 0.59 ± 0.16 kmol s for CO (mean ± 1-σ) where the bounds presented 

217 here represent the posteriors’ daily variability. Ren et al.11 using a mass balance method, 

218 estimated emission rates of 96 kmol s-1 for CO2, 0.57 ± 0.28 kmol s-1 for CH4 and 0.55 ± 

219 0.27 kmol s-1 for CO using the same fight observations as this study. In addition, Salmon et 

220 al.12 estimated a CO emission rate (also using a mass balance method) of 0.54 ± 0.47 kmol 

-1 
221 s in February 2015. Our estimates are consistent with these within 1-σ uncertainties for 

222 both methods. 

223 The applied inversion methodology corrected the prior inventories (Fig. 2a,c,e) by quite 

224 di˙erent amounts leading to consistent results in the posterior emissions, with variability due 

225 to choice of prior of 11%, 13% and 6% (or 9.6, 0.055 and 0.035 kmol s-1) for CO2, CH4 and 

226 CO respectively (1-σ), signifcantly lower than the variability of the prior values themselves 

227 (fat prior included), 41%, 65% and 87% (or 20.8, 0.097 and 0.38 kmol s-1). The fat (FL) 

228 prior led to the largest range and IQR for all of the three gases due to the loose constraint it 

229 imposed on the inversion. For CO 38 
2, the FFDAS prior (FF) resulted in the lowest posterior 

230 estimates as well as the lowest range and IQR due to the low prior uncertainty assigned, 

231 making it hard for the inversion to deviate from the prior values. For CH4, the inversions 

232 using the 2012 EPA gridded inventory41 (EP) as a prior provided the lowest estimates, 

233 probably due to the lower prior emissions allocated into the urban areas and, therefore, 

234 lower prior uncertainties, making it harder to correct those areas. For CO, the scaled ACES 

235 inventory (AC) led to the lowest estimates. Variability due to transport model choice was 

236 15% for CO2, 13% for CH4 and 16% for CO (1-σ), (Figs. S7c, S10c and S13c). We note 

237 that HR and MY2 provided the highest and lowest estimates respectively, while MY and BL 
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238 had the most variable results. The observation dataset choice impacted the results the least, 

239 with only a 6 % standard deviation of the mean for CO2 and 10% for CH4 with very similar 

240 range and IQR for each of the three cases (Figs. S7d, S10d). In contrast to the relatively 

241 small e˙ect of varying these three model choices (prior, transport model, and observation 

242 dataset), the daily variability of the estimates was 33% for CO2 and 28% for CH4 and CO 

243 (1-σ) (Figs. 2b,d,f). The mean estimates for each day do not overlap with the IQR of the 

244 other days and while the CO2 and CO estimates follow a very similar pattern (as they have 

245 similar sources), they di˙er from that of CH4. In addition, the coeÿcient of determination 

246 between the daily emission estimates for the three gases is r2=0.90 for CO vs CO2, r2=0.40 

247 for CO2 vs CH4 and r2=0.19 for CO vs CH4. This suggests that the inversion is actually 

248 providing di˙erent estimates for each day, and that the posterior di˙erences between days 

249 are not only the result of choices in the model set up. 

250 The spatial distribution of the averaged CO2 posterior emissions for each prior case 

251 shows that most of the emissions are coming from the urban areas, even in the fat prior 

252 case (Fig. S8). The results show that the roads (traÿc emissions) and fne spatial scale 

253 features are only resolved in modeling results when high resolution inventories are used as 

254 the prior emissions. The inversion was able to spatially di˙erentiate between the cities of 

255 Baltimore and Washington DC, correcting their emissions di˙erently (Fig. S9): emissions 

256 from Washington, DC were adjusted upward in all cases while those from Baltimore were 

257 corrected downward in the cases of AC, AC2 and VU and only slightly upward for the rest. 

258 The spatial distribution of the averaged CH4 posterior emissions (Fig. S11) indicates that 

259 while some emissions are from urban areas, signifcant emissions occur NNE and NNW of the 

260 Washington - Baltimore metropolitan area as well, which is di˙erent than for CO2. All the 

261 CH4 priors were corrected upwards indicating an overall underestimation of emissions in the 

262 existing inventories (Fig. S12), with the strongest corrections applied to point sources outside 

263 urban areas. However, the urban areas were also corrected upward, with this correction being 

264 larger for EP than for EG or EB cases. Our posterior mean ratio to the 2012 EPA gridded 
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Figure 2: Boxplots of the total CO2, CH4 and CO estimated emission rate within the ac-
counting box grouped by: (a,c,e) the di˙erent inventories used as priors and (b,d,f) the 
di˙erent research fights. The grey bar in panels (a,b) are the values provided by ACES, 
scaled to totals of 2016, for February between 12 - 19 EST (referred as REF). Blue bars 
indicate the 25th to 75th range, whiskers the range up to 1.5 times the IQR, x’s the outliers 
(> 1.5 x IQR), red line the median, square markers the mean and the dotted line the pos-
terior mean. The circled pluses in panel (a,c,e) represent each prior’s total emissions. (See 
methods section and Tables S1 and S2 for abbreviations) 
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265 inventory (EP),41 2.73 ± 0.76, is in very good agreement with Ren et al.’s11 estimate of 2.8 

266 times the EPA values for the same region. 

267 The spatial distribution of the mean posterior CO fuxes (Fig. S14) indicates that the 

268 CO emissions largely originate in the urban areas, as they do for CO2. In addition, the 

269 correction (Fig. S15) is mostly applied in the urban cores, increasing the fuxes for AC, FL 

270 and EG while strongly decreasing the emissions for NI case. Due to the construction of AC 

271 for CO (using the ACES CO2 inventory scaled by mean observed ΔCO:ΔCO2 ratio), power 

272 plant emissions were present in the prior, while we expect the power plants ratio to be small 

273 compared to other sources. The inversion was able to correct down at least a few of them 

274 (blue dots in Fig. S15a). The NEI CO prior case was strongly corrected down over all urban 

275 areas, even in Philadelphia, indicating that the inversion is able to correct underestimation 

276 as well as overestimation in the prior. The NEI CO overestimation has been extensively 

277 reported in the literature;22,23,51 specifcally in the DC/Baltimore region a close to 50 % 

278 overestimation of the NEI CO inventory has been reported,11,12 similar to our result of 58%. 

279 Sensitivity Analysis 

280 For all three gases, the diagonal model-data mismatch error covariance (EDC1) provided 

281 larger emissions estimates than the equivalent full covariance case (C1) (Fig. S16). In addi-

282 tion, the range and IQR within each case was larger with the diagonal covariance indicating 

283 that the o˙-diagonal terms played an important role in limiting the number of possible so-

284 lutions. The background selection impacted both the mean estimates and the range and 

285 IQR indicating that incorrect background specifcation can bias the estimation results. The 

286 prior fux error sensitivity test showed that posterior emissions estimates were larger when 

287 prior uncertainties were doubled, and the range and IQR within each case was also larger 

288 indicating a potential over-ftting problem. When prior uncertainties were halved from the 

289 base case, the estimates were lower and less variable, indicating the solutions were more 

290 constrained by the prior fuxes than by the observations. This e˙ect was similar to the FF-
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291 DAS prior case for CO2, for which the prior uncertainties were likely too small. Despite the 

292 di˙erences described above, the variability of the mean across the sensitivity analysis cases 

293 remained relatively low, at 11% for CO2, 17% for CH4 and 8% for CO. 

294 Special Case: Flat Prior 

295 The inversions using a spatially fat prior (FL) were able to provide mean totals close to those 

296 in which an inventory prior was used for all three gases (Fig. 2). This result demonstrates the 

297 potential for using aircraft measurements to estimate an overall city-wide emission rate for 

298 a location where a spatially explicit inventory or other emissions information is unavailable. 

299 However, we have also shown that the range and IQR in the fat prior case was the greatest 

300 among all the prior cases, implying that when using a fat prior sampling more time periods 

301 (i.e. using more observations) is required to provide confdence in the estimates. The spatial 

302 distribution of the campaign-averaged posterior fuxes for CO2, CH4 and CO (Fig. S17) is 

303 consistent with the results obtained with the other priors as well. For example, CO2 and CO 

304 show very similar spatial distributions with most of the emissions originating in the urban 

305 areas while CH4 shows a broader spatial distribution. Note that these spatial patterns are a 

306 result of a campaign of 5 days with winds coming from di˙erent directions (Fig. S1), leading 

307 to a good triangulation of the source locations. 

308 Discussion: Uncertainty and Sources of Variability 

309 Method Combined Uncertainty 

310 We were able to disentangle and quantify the di˙erent sources of variability present in the 

311 inversion-based emissions estimates and found that the largest source of variability in the 

312 retrieved emissions is the daily variability. In the following analysis, we omit the daily 

313 variability because the goal is to understand the uncertainty we expect in each day’s estimate 

314 and whether the daily variability is likely to be caused by general uncertainty in the method. 
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315 Here we assume each source of variability is independent of the others, so that the variances 

316 can be summed to estimate the method uncertainty in each day’s estimate. We note that the 

317 assumption of independence is not likely to be true and therefore this uncertainty estimation 

318 might be biased due to not considering the correlations among them. In addition, the 

319 ensemble construction (transport, priors, observation dataset, covariances and background) 

320 might impact the ensemble spread and therefore might not be the true uncertainty in the 

321 method but it does, however, provide an indication of the likely variability introduced by 

322 the di˙erent model choices. 

323 Three di˙erent cases are shown in Table 1 for estimating combined uncertainties. The 

324 Combined Uncertainty 1 case considers all sources of variability tested in the inversion. 

325 However, we believe that two transport models are outliers that su˙er from improper mixing 

326 and resulted in biased estimations. The highest retrieved fuxes are obtained consistently 

327 using the HR confguration, suggesting that this confguration is too dispersive, although 

328 more research is needed to be more certain. The lowest posterior estimates consistently 

329 correspond to the confguration including the experimental vertical mixing parametrization 

330 (MY2), indicating that this method may under-predict vertical mixing. Removing these two 

331 outlier confgurations reduces the variability due to transport model choice to 7% for CO2, 

332 10% for CH4 and 8% for CO; these are used to calculate the Combined Uncertainty 2 case. 

333 Because the fight tracks are di˙erent for each aircraft, the variability due to the observation 

334 dataset may also be a˙ected by the spatial and temporal distribution of the sources being 

335 measured, so we remove this variability to also calculate the Combined Uncertainty 3 case. 

336 Daily Variability in Estimated Emissions: Aliasing 

337 The daily variability in our posterior emissions from the inversion ensemble was 33% for CO2 

338 and 28% for CH4 and CO (Table 1). This variability is larger than each individual source of 

339 variability as well as the three cases of the combined uncertainties as shown above, although 

340 for CH4 the two are comparable. In order to better understand the origin of this variability 
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Table 1: Sources of variability and combined uncertainty. 

Source of uncertainty � CO2 (%) � CH4 (%) � CO (%) 

daily 33 28 28 
prior 11 13 6 
transport 15 14 16 
transport no outliers 7 10 8 
observation dataset 6 10 6a 

sensitivity 11 17 8 
Combined Uncertainty 1 
(prior, transport, 
dataset and sensitivity) 22 27 20 
Combined Uncertainty 2 
(prior, transport no outliers, 
dataset and sensitivity) 18 26 14 
Combined Uncertainty 3 
(prior, transport no outliers 
and sensitivity) 17 24 13 
aCO variability due to the observation dataset is assumed to be the same as for CO2. 

341 in the estimates, we conducted an analysis of the temporal variability and spatial sampling 

342 of the two largest sources of CO2 in the accounting box, according to the ACES inventory: 

343 energy generation and on-road traÿc.39 Thirteen power plants and 87 counting stations were 

344 used within the accounting box (Fig. S18). Both of these sources have signifcant variability 

345 throughout a single day, with traÿc counts in the area varying by up to a factor of 20 between 

346 night time and evening rush hour depending on the location (Fig. S19, S20), and individual 

347 power plant reported emissions varying up to a factor of two within a single day, but even 

348 more between days as they sometimes shut down completely (Fig. S21). If daily means 

349 of these emissions are investigated, neither the average daily mean of powerplant emissions 

350 nor the average daily mean of traÿc counts correlates with the daily mean emissions from 

351 our inversion posterior. However, the daily variability in the posterior estimates can indeed 

352 be explained using an analysis that considers the hourly variability of these two sectors’ 

353 emissions, combined with the specifc fight pattern on a given day. We defne each day’s 

354 normalized observed emissions (nOE, Eq. 2) using powerplant and traÿc count data to 

355 conduct this analysis. 
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Figure 3: Estimated CO2 emission rates (kmol s-1) for each research fight as a function of 
the normalized observed emissions (nOE) computed using CEMS and TMAS hourly data. 
Errors bars correspond to 25th and 75th percentiles of the ensemble of inversions for each 
day. Red line indicates the linear ft. 

356 Fig. 3 shows the daily mean estimated CO2 emissions from the inversion as a function 

357 of the normalized observed emissions (nOE), with error bars representing the 25th and 75th 

358 percentiles of the ensemble of inversions for each day. The correlation between the two is 

359 nearly perfect (r2 = 0.97), implying that the daily variability observed by the inversion is 

360 caused by irregular spatiotemporal sampling (aliasing) of the rapidly changing underlying 

361 emissions. 

362 These results, showing that aliasing of large hourly variability in emissions from large 

18 



363 CO2 sources can explain 97% of the variability in our CO2 emissions estimate, suggest that 

364 similar spatiotemporal variability in CO and CH4 sources could explain the variability in our 

365 estimates for those gases as well. We note that for CH4 this is less clear due to the larger 

366 estimated uncertainty in the posterior emissions, but it is plausible given that large temporal 

367 variability in CH4 source emissions has been reported in oil and gas production felds,27,52 

368 and likely exists in urban areas as well. 

369 Path Forward 

370 Flight campaigns are extremely useful for greenhouse gas (GHG) and pollutant emissions 

371 estimation because of the fast deployment and large spatial coverage that is provided by 

372 a moving platform. However, they are limited by the reduced temporal coverage as well 

373 as the diÿculty of measuring all the areas at the same time. We have shown that this 

374 irregular sampling (in time and space) generates aliasing of the emissions impacting both 

375 the emissions estimates and the variability of those estimates. Therefore, moving forward, 

376 multiple fights over a region over di˙erent hours, days, months and seasons are recommended 

377 as well as multiple aircraft fying together with well-coordinated fight plans based on forecast 

378 back-trajectories so that the coverage of the cities can be maximized at all times. Addition 

379 of measurements from every platform (surface, aerial or from space) available should also 

380 help reduce the aliasing of emissions. This aliasing of emissions is likely not exclusive to 

381 aircraft campaigns but rather a ubiquitous problem to all monitoring systems based on 

382 spatiotemporally discrete sampling (aircraft, cars, polar orbiting satellites as well as sparse 

383 tower networks) and it must be considered when designing the measurements and interpreting 

384 the results. 
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